Recent Advances in Light Matter Interactions in Temporal Media
DOI:
https://doi.org/10.52253/Keywords:
Temporal media, Time-varying media, Light matter interactions, Electromagnetic wave propagationAbstract
In this review, the progress on the research development in electromagnetic wave propagation through temporal/time-varying media is presented. Such media refers to materials or environments whose properties change over time. Therefore, unlike spatial waveguides that manipulate light based on spatial configuration of the structure, the temporal waveguides focus on the evolution of light pulses over time. Understanding temporal media is essential for developing advanced communication protocols, efficient waveguides, and accurate simulations of physical systems, ultimately improving the design and performance of various applications in science and technology. As the controlled light matter interactions in the time domain offers numerous advanced applications for secured optical communication, information processing and ultrafast optics in the realm of quantum technology. The recent advances in light-matter interactions in temporal media have opened
exciting avenues for manipulating light at unprecedented levels, leading to novel applications in fields like quantum computing, telecommunications, and material science.
Downloads
References
Alù, A., Silveirinha, M. G., Salandrino, A., & Engheta, N. (2007). Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Physical Review B, 75, 155410. https://doi.org/10.1103/PhysRevB.75.155410.
Bossart, A., & Fleury, R. (2021). Non-Hermitian time evolution: From static to parametric instability. Physical Review A, 104, 042225. https://doi.org/10.48550/arXiv.2103.15915.
Budko, N. V. (2009). Electromagnetic radiation in a time-varying background medium. Physical Review A, 80, 053817. https://doi.org/10.1103/PhysRevA.80.053817.
Engheta, N. (2021). Metamaterials with high degrees of freedom: Space, time, and more. Nanophotonics, 10, 639–642. https://doi.org/10.1515/nanoph-2020-0414.
Fante, R. (1971). Transmission of electromagnetic waves into time-varying media. IEEE Transactions on Antennas and Propagation, 19, 417–424. https://ieeexplore.ieee.org/document/1139931.
Fante, R. (1973). On the propagation of electromagnetic waves through a time-varying dielectric layer. Applied Scientific Research, 27, 341–354. https://doi.org/10.1007/BF00382497.
Felsen, L. B., & Whitman, G. M. (1970). Wave propagation in time-varying media. IEEE Transactions on Antennas and Propagation, 18, 242–253. https://ieeexplore.ieee.org/document/1139657.
Galiffi, E., Tirole, R., Yin, S., Li, H., Vezzoli, S., Huidobro, P., Silveirinha, M., Sapienza, R., Alù, A., & Pendry, J. (2022). Photonics of time-varying media. Advanced Photonics, 4(1), 014002-2. https://doi.org/10.1117/1.AP.4.1.014002.
Gaur, D. S., & Mishra, A. K. (2024). Reflection and transmission of Airy pulse from controllable periodic temporal boundary. Annalen der Physik, 2400141, 1–8. https://doi.org/10.1002/andp.202400141.
Ginzburg, V. L., & Tsytovich, V. N. (1973). On the theory of transition radiation in a nonstationary medium. Zh. Eksp. Teor. Fiz, 65, 132–144. http://jetp.ras.ru/cgi-bin/dn/e_038_01_0065.pdf.
Ginzburg, V. L., & Tsytovich, V. N. (1979). Several problems of the theory of transition radiation and transition scattering. Physics Reports, 49, 1–89. https://doi.org/10.1016/0370-1573(79)90052-8.
Iyer, A. K., Alù, A., & Epstein, A. (2020). Metamaterials and metasurfaces—historical context, recent advances, and future directions. IEEE Transactions on Antennas and Propagation, 68, 1223–1231. https://doi.org/10.1109/TAP.2020.2969732.
Kort-Kamp, W. J. M., Azad, A. K., & Dalvit, D. A. R. (2021). Space-time quantum metasurfaces. Physical Review Letters, 127, 043603. https://doi.org/10.1103/PhysRevLett.127.043603.
Koutserimpas, T. T., & Fleury, R. (2018). Electromagnetic waves in a time periodic medium with step-varying refractive index. IEEE Transactions on Antennas and Propagation, 66, 5300–5307. https://ieeexplore.ieee.org/document/8434236.
Lustig, E., Sharabi, Y., & Segev, M. (2018). Topological aspects of photonic time crystals. Optica, 5, 1390. https://doi.org/10.1364/OPTICA.5.001390.
Maier, S. A. (2007). Plasmonics: Fundamentals and applications. Springer.
Mendonça, J., Martins, A., & Guerreiro, A. (2003). Temporal beam splitter and temporal interference. Physical Review A, 68, 043801. https://doi.org/10.1103/PhysRevA.68.043801.
Morgenthaler, F. R. (1958). Velocity modulation of electromagnetic waves. IRE Transactions on Microwave Theory and Techniques, 6, 167–172. https://ieeexplore.ieee.org/document/1124533.
Novotny, L., & Hecht, B. (2012). Principles of nano-optics. Cambridge University Press.
Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical Review Letters, 85, 3966–3969. https://doi.org/10.1103/PhysRevLett.85.3966.
Plansinis, B. W., Donaldson, W. R., & Agrawal, G. P. (2016). Temporal waveguides for optical pulses. Journal of the Optical Society of America B, 33, 1112–1119. https://doi.org/10.1364/JOSAB.33.001112.
Sacha, K., & Zakrzewski, J. (2017). Time crystals: A review. Reports on Progress in Physics, 81, 016401. https://iopscience.iop.org/article/10.1088/1361-6633/aa8b38.
Saleh, E., & Teich, M. C. (1991). Fundamentals of photonics. John Wiley & Sons.
Shaltout, A. M., Shalaev, V. M., & Brongersma, M. L. (2019). Spatiotemporal light control with active metasurfaces. Science, 364(6441). https://www.science.org/doi/10.1126/science.aat3100.
Taravati, S., Chamanara, N., & Caloz, C. (2017). Nonreciprocal electromagnetic scattering from a periodically space-time modulated slab and application to a quasisonic isolator. Physical Review B, 96, 165144. https://doi.org/10.1103/PhysRevB.96.165144.
Veselago, V. G. (1967). Electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 92, 517. https://iopscience.iop.org/article/10.1070/PU1968v010n04ABEH003699.
Wilczek, F. (2012). Quantum time crystals. Physical Review Letters, 109, 160401.https://doi.org/10.1103/PhysRevLett.109.160401.
Xiao, Y., Maywar, D. N., & Agrawal, G. P. (2014). Reflection and transmission of electromagnetic waves at a temporal boundary. Optics Letters, 39, 574–577. https://doi.org/10.1364/OL.39.000574.
Yablonovitch, E. (1973). Spectral broadening in the light transmitted through a rapidly growing plasma. Physical Review Letters, 31, 877–879. https://doi.org/10.1103/PhysRevLett.31.877.
Downloads
Published
Issue
Section
Share it
License
Copyright (c) 2025 Neetu Agrawal, Triranjita Srivastava (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License which permits
its use, distribution and reproduction in any medium, provided the original work is cited.